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Abstract: The Hopfield neural network is proposed in this work to invert transverse and longitudinal 
relaxation time decay curve from spin-echo experiments. Simulated and experimental data were used 
to test the performance of this approach. The inverse Laplace transform, commonly used to address  
this problem, is used as the initial guess for the network. The probability density function can be used 
in a large variety of problems involving multiple sclerosis diagnostics or Portland cement studies, 
which  will be discussed in the present work. 
 
Resumo: A Rede neural de Hopfield é proposta neste trabalho para inversão da curva de decaimento 
do tempo de relaxação transversal e longitudinal a partir de experimentos de eco de spin. Dados 
simulados e experimentais serão usados para testar o desempenho do método. A transformada 
inversa de Laplace, geralmente selecionada para tratar este tipo de problema, é utilizada como valor 
inicial para a rede. A função densidade de probabilidade pode ser usada em diversos problemas, tais 
como, em diagnósticos de esclerose múltipla ou análise de cimento Portand, problemas a serem 
discutidos no presente trabalho. 
 

 

Introduction 

     Spatial inhomogeneity of the magnetic field 

causes individual precession frequency of the 

nuclear magnetization at each infinitesimal 

volume element.  Spins interaction induces a 

rapid decay of the free induction signal,
1
 which 

is avoided by multiple refocusing pulses. The 

resultant train of spin-echoes is denoted by the 

spin-echo experiment and can be used to 

calculate transverse longitudinal relaxation 

times by, for example, fitting the data to 

exponential functions. Nevertheless, we have 

used spin-echo data to recover the probability 

density function. This consists of an ill-

conditioned inverse problem, and particular 

methods are required.
2,3,4

 In the Hadamard 

sense,
5
 the inverse problem is characterized 

by a solution that does not exist, is not unique 

or is not continuous.  In this work, the Hopfield 

neural network will be applied to simulated and 

experimental data. During the inversion 

procedure, the multiple solution character of 

the problem and the ill-conditioned nature of 

the matrices will be emphasized. 

 

Theoretical Background 

 

     The longitudinal, T1, and transverse, T2, 

relaxation times concept was established by 

Bloch in 1946 with the gyroscopic motion 

description.
6
 Using this macroscopic model 

one can study the behavior of the spins when 

a magnetic field is applied. In the same volume 

element there is no variation of intensity, and 

the spatial inhomogeneity of the field has to be 
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considered.
1
 This will cause the neighboring 

elements to have slightly different intensity of 

the applied field, and the magnetization 

equation has to be considered as a sum of 

multiple T2 components
7,8 

:  

 

(1)  

 

 

with λi =1/T2
(i)

 being the rate constant for each 

process and P(λi) its corresponding probability. 

In the continuum limit for the transverse 

relaxation time and for the probability density 

function f(λ)=P(λ)/∆λ, one has
9
:  

 

(2)              g( ) K( , )f ( )

b

a

t t dλ λ λ= ∫  

 

where g(t) is the spin-echo data and 

K(t, )=exp(-t ) λ λ . Equation (2) is also 

denoted as a Fredholm integral equation of 

first kind.
10,11

 

     For the longitudinal relaxation time, the 

kernel of the magnetization equation is 

represented by 

 

(3)             
( ) (1 exp( ))g t tλ= − −

   

 

As in the transverse relaxation problem, spins 

interactions and the inhomogeneity of the 

magnetic field should be considered. In this 

sense, equation 3 can be rewritten
1
 as: 

 

( ) (1 exp( )) ( )g t t f dλ λ λ= − −∫ , or, 

 

  (4)          1 ( ) exp( ) ( )g t t f dλ λ λ− = −∫  

 

in which λ=1/T1
(i)

, f(λ) the distribution function 

of the longitudinal relaxation time and g(t) the 

signal intensities.  

 

Methodology 

 

     Calculation of density probability function, 

f(λ), from the decay curve g(t) characterizes a 

set of problems denoted by ill-conditioned 

inverse problems, and requires special 

techniques for its solution.
2,3,4

 In our work, the 

Hopfield recurrent neural network
4,12

 was 

chosen. The Hopfield neural network consist of 

one recurrent layer network with fully 

connected neurons. The information in the 

network is propagated by the state activation 

of neurons, ui, which is calculated by a 

weighted sum of all its inputs.
10,11,13

 The 

activation function, φ(ui(t)) is chosen as an 

increasing function conform to the nervous 

impulse model.
4,12

  

     In a neural network approach, an energy 

function is defined, 

 

 

(5)   

 

 

with fi=φ(ui(t)), n the number of points used to 

represent (2) and m, the number of available 

experimental data.  

The convergence criteria is established by 

imposing the condition, 

 

(6)   

 

 

and the stable state, f, that minimizes 

2

2
−Kf g  is reached. 

     In this sense, the time evolution of the 

neurons is given by: 

M P( )exp( )
xy i i

tλ λ= −∑

2

1 1

1
(( ) )

2

m n

ij i j

j i

E K f g
= =

= −∑ ∑

i

i

du E

dt f

∂
= −

∂
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(7)  

 

with, 

 

 

 

 

This equation has to be integrated until an 

establishment of the equilibrium is reached
14

, 

which corresponds to a solution f of the 

problem. The multiple solution character of the 

ill-posed problem can be observed along the 

integration procedure. If the output error is 

within experimental error, the experimentalist 

can decide on the right solution, based, for 

example, on the relative areas and position of 

the components. 

 

Results and Discussion 

 

T2 Relaxation Time Distribution   

 

     The Laplace transform of the probability 

density function, equation 2, is used to 

represent the signal intensity, g(t), measured 

at echoes time, t. These data of the T2 decay 

curve
7,15

 were generated by the bi-exponential 

function:  

 

(8)   

 

These simulated data is shown in Figure (1). 

The system of differential equations, Eq. 7, 

requires an initial condition to be solved. In this 

sense, the f function for initial guess was 

calculated by the analytical inverse Laplace 

transform
13,16,17

,  

 

 

(9)  

 

 

The constants Ai and αi are respectively the 

amplitudes and rate constants used in 

equation (8) and y the inverse of the 

transverse relaxation time. Numerical 

integration of the direct problem, with k=30 in 

equation 9 was performed
14

 recovering the 

synthetic data with seven significant figures. 

The matrices of =Κf g  problem were 

calculated in a rectangular representation with 

n=32 and 16 data points.  
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Figure 1. Bi-exponential T2 decay curve. 
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In the representation procedure of equation 2, 

the size of the sub-spaces involved in the 

problem is established, since 
mxnRK ∈ , 

n
Rf ∈

 and 
m

Rg ∈
.
3,12

 This base size gives 

a residual error of eight significant figures in 

comparison with the data given by Equation 8. 

Figure 2 shows the distribution function 

obtained in the inversion of the simulated data.  

Integration of equation (7) was stopped at a 

point in which the residual error,  

             

(10)              
2

2
−Kf g  

 

reached a desired tolerance. 

     Errors of about 20% were considered in the 

initial guess. The neural network results are 

still in reasonable agreement with the Eq. 9 

function, presenting the transverse relaxation 

time distribution with two peaks in the same 

positions. At 30% of error in the initial guess, 

the smallest peak in the probability density 

function is slightly changed. Another analysis 

was made including 20% of error in the 

simulated data of the T2 decay curve. In this 

case, although the solution presents negative 

numbers, the two peaks in the right position 

were also recovered.    

     This inversion procedure of the 

experimental T2 decay data can be used in 

multiple sclerosis diagnostics.
13

 As multiple 

sclerosis (MS) lesions have intrinsic increased 

transverse relaxation times in comparison with 

the surrounding white matter, this experiment 

can distinguish MS lesions from the normal 

white matter using these T2 relaxation 

properties. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T1 Relaxation Time Distribution   

 

 In this work, experimental data of 

longitudinal relaxation decay curve for Portland 

cement was considered, and we also used the 

inverse Laplace transform. Equation 4 was 

used to deal with the experimental data, and 

the base size chosen has 128 data points and 
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Figure 2. State of the neurons (bullet) and density function of Eq. 9 
(line). Simulated data was used. 
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n=264. The experimental data and the 

recovered data in the direct problem, Kf = g , 

is shown in Figure 3.       

     The magnetization recovery, determined by 

the Inversion-Recovery experiment, is an 

increasing curve. Figure 3 displays the “mirror 

image” of the experimental data around the x-

axis.  

     The longitudinal relaxation time distribution 

obtained by the inversion procedure is shown 

in Figure 4. The inverse Laplace transform was 

used as the initial guess by the Hopfield neural 

network. At this point, it is important to note the 

decreasing energy property of the neural 

network. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Experimental data (*) and recovered data (full line) in the direct problem. 

 

 

 

     Since the inverse Laplace transform is 

given as the initial guess for the network, it will 

be improved and the neural network results will 

have a smaller residual error. In Table 1 the 

residual errors and peak position of each 

distribution are displayed. 

 

Table 1. Residual errors and peak positions of the 
distribution functions. 

 
 Inverse 

Laplace 
transform 

Hopfield neural 
network 

Residual errors 
2

2
Kf - g  

3.185 2.955 

Peak position 
T1(s) 

0.0197 
0.0026 

0.0197 
0.0031 

 

 

     Another analysis was made considering a 

null initial guess, which corresponds to  

φ(ui(t))=0 for all the neurons.  

     The distribution function retrieved by the 

network is similar to the obtained by the 

network in Figure 4.  But, in this case, no 

information a priori is given. The multiple 

solution character of the inverse problem is 

also an important consideration. 

     Although the neural network solution has a 

smaller residual error; the most appropriate 

solution has to be determined together with the 

chemical information of the problem. 
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Figure 4. Longitudinal relaxation time distribution obtained by ILT (full line) and the HNN (bullets). 

 

 

 

 

Conclusions 

 

     Recovering the transverse and longitudinal 

relaxation time distribution from spin-echo data 

is indeed, an ill-posed problem. The results 

obtained were in excellent agreement with the 

experimental data in the direct problem, 

confirming the usefulness of the method. The 

use of the recurrent neural network is attractive 

for its efficiency and simplicity. The theory and 

numerical background requires only 

elementary concepts. Also, the computer code 

developed is very short. Except for the 

integration routine, the code has about 100 

lines and is very simple to use.  

     The inverse Laplace transform as the initial 

guess proved to be appropriate. The recurrent 

neural network, due to its property of 

decreasing energy, improves the initial 

condition, generating a distribution function 

with lower residual error.  

     The methodology used here is not 

restricted to characterizing MS lesions or 

Portland cement analysis, but can be used to 

determine the transverse and longitudinal 

relaxation time distribution from the spin-echo 

data in a wide variety of systems.
9,12,13
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